

Novel non-invasive cell-free nucleic acid-based diagnostic test for liver fibrosis in patients with type II diabetes

Chenlu Hou| Sr Staff Scientist | GRAIL, Inc Ajinkya Kokate¹, Andrea Mich¹, Xiao Yang¹, Justice Williams¹, Seema Singh², Susy Kim², Lisa Richards², Nathan Hunkapiller¹, Rohit Loomba²

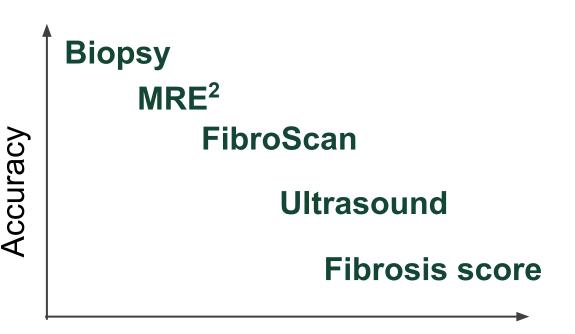
> GRAIL, Inc University of California, San Diego

Slides are the property of the author and AASLD. Permission is required from both AASLD and the author for reuse.

Disclosure

Chenlu Hou

I disclose the following financial relationship(s) with a commercial interest: employee of GRAIL and shareholder of GRAIL Inc. and Illumina


Slides are the property of the author and AASLD. Permission is required from both AASLD and the author for reuse.

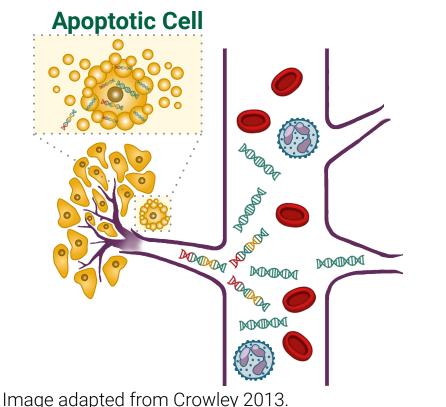
Opportunity to Improve Fibrosis Diagnostics in NAFLD

Fibrosis is the Most Significant Prognostic Feature for NAFLD

- Mortality of NAFLD patients (*Eksedt 2015*)
 - 4x worse prognosis for F3 F4
 - No increase for high NAS¹
 (5-8) without severe fibrosis
- Fibrosis stage instead of NAS or other features of NASH associate with mortality (*Angulo 2016*)

No Accurate and Easily Accessible Solution for Routine Clinical Use

Accessibility for routine clinical use


1. NAFLD activity score 2. Magnetic reasonance enterography

Cell-free Nucleic Acids for Non-Invasive Diagnostics

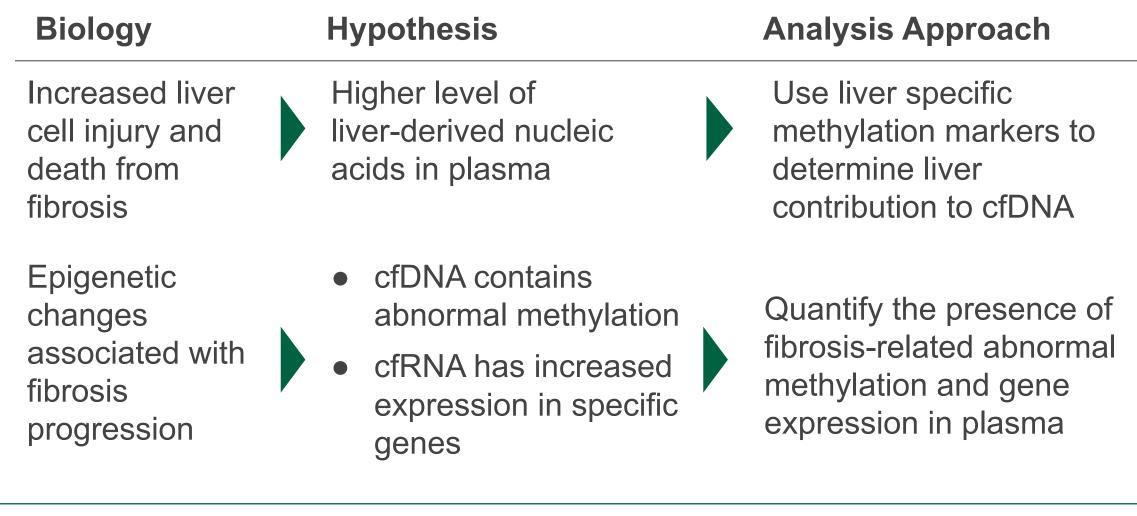
Tissues Shed Nucleic Acids into Blood

Tissue Signatures are Observed in Cell Free Nucleic Acids (cfNA)

- cfNA tissue of origin could be predicted by
 - Methylation patterns (Sun 2015; Oxnard 2019*)
 - Fragment endpoint distribution (*Snyder 2016*)
- Presence of cancer mutations in cfNA has been extensively studied

*Oxnard GR et al. Proffered paper at: ASCO Breakthrough Meeting; Oct 11, 2019; Bangkok, Thailand. Abstract 44.

Aim


To examine the association between cell-free nucleic acids and stage of fibrosis in diabetes with or without NAFLD

Objective: Explore Fibrosis Signal in Plasma

Study Design

Study Samples

- 37 patients with Type II diabetes and varying level of steatosis and fibrosis:
 - MRI-PDFF¹ and MRE imaging
 - Tissue biopsy not available
- 226 controls (BMI < 25)

cfNA Assays

- Whole genome bisulfite sequencing (30x):
 - Plasma cfDNA
 - Matched PBMC²
 DNA

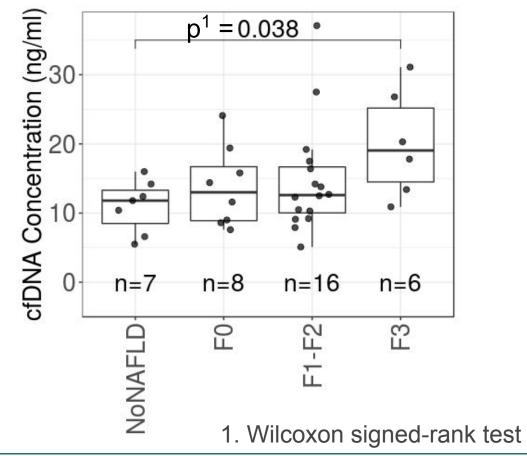
Analysis

- Liver contribution to cfDNA
- Abnormal cfDNA methylation

- Whole
 Transcriptome RNA
 sequencing
- cfRNA expression

1. Magnetic Resonance Imaging Proton Density Fat Fraction 2. Peripheral b

2. Peripheral blood mononuclear cell



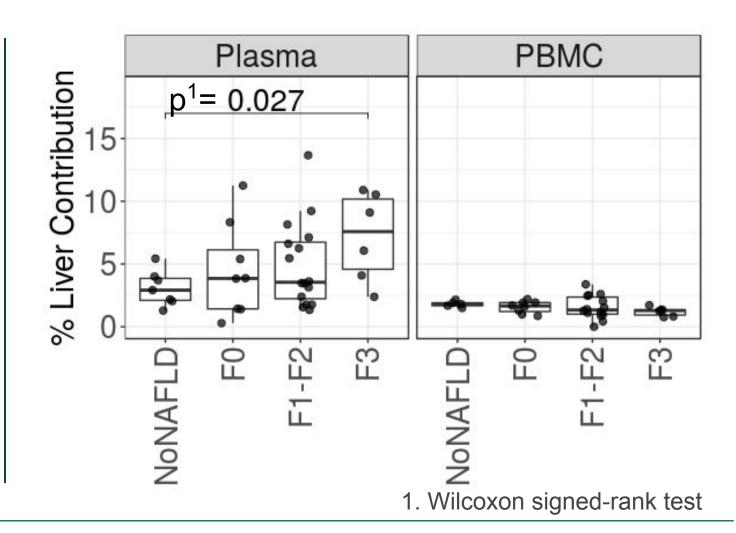
Increased Total cfDNA Concentration in F3+ Patients

Patient Classification by Imaging

Stage	MRI- PDFF	MRE (kPa)	N
No-NAFLD	< 5%	< 2.55	7
Steatosis/no fibrosis (F0)	≥ 5%	< 2.55	8
F1-2		2.55-3.62	16
≥ F3		> 3.62	6

cfDNA Yield / Plasma Volume

Slides are the property of the author and AASLD. Permission is required from both AASLD and the author for reuse.

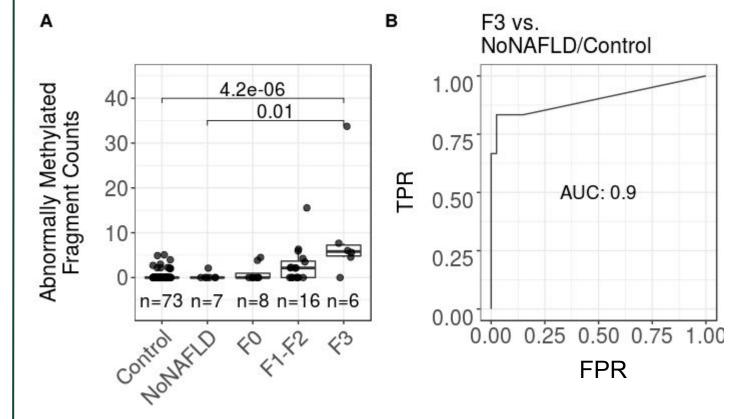


Increased Liver cfDNA Fraction in F3+ Patients

Liver cfDNA Fraction Measurement Approach

Identified liver specific methylation patterns from literature reports

Analyzed WGBS data for % methylation at liver-specific sites in plasma and PBMC

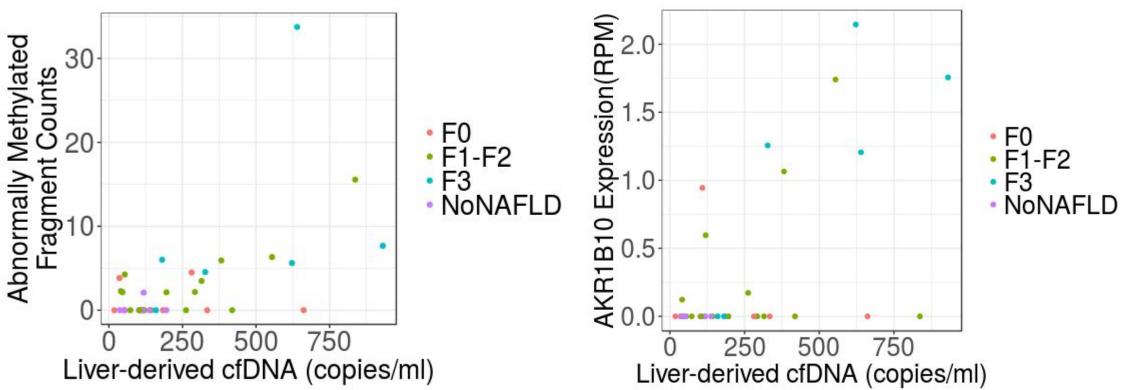

Abnormal Methylation Patterns Observed in F3+ Patients

Abnormal Methylation Criteria

- Methylation patterns

 (fragment level) rarely found
 (p<0.01) in controls → could
 be specific to fibrosis or
 other diabetes-related
 phenotype
- Methylation patterns (CpG level) matched those associated with fibrosis severity in tissue studies

Fibrosis-Specific Abnormal Methylation Fragments could Differentiate ≥F3



Correlation of Disease- and Liver-specific Signatures

Higher Abnormal Methylation Observed in Samples with Higher Liver-Derived DNA

F3+ Samples with High Methylation Signal have Higher AKR1B10 Expression

Key Take-Aways

- Liver- and fibrosis-specific signals observed in plasma indicate potential feasibility of non-invasive detection of fibrosis in NAFLD patients
 - Increased liver DNA in plasma from patients with severe fibrosis
 - Abnormal plasma cfDNA methylation at regions identified from tissue studies could distinguish F3+ patients from those without NAFLD
 - Correlation between quantity of liver-derived DNA and abnormal methylation / gene expression in patients with severe fibrosis strengthens the conclusion that cfNA signals represent true liver biology

