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BACKGROUND
 ¡ Previous studies on transplanted tissue or single cancers have indicated that the fragment 

lengths of plasma-derived cfDNA reflect their respective source. 

 ¡ Specifically, non-hematopoietically-derived cfDNA molecules are shorter than those that 
are hematopoietically-derived,1 and circulating tumor DNA (ctDNA) is shorter than normal 
cfDNA.2,3

 ¡ This has fueled research on the detection of tumor-derived mutations in cfDNA, commonly via 
whole-genome sequencing or PCR-based methods.4,5

 ¡ Results, however, are often clouded by interfering (non-tumor-specific) somatic and 
clonal-hematopoiesis (CH)-derived mutations.6,7

 ¡ Given that CH increases with age,8-10 and given the prevalence of cancer in the general 
population,11 most individuals in a cancer screening population will have no tumor-derived 
alleles and mostly alleles from CH.

 ¡ To improve detection of non-metastatic tumors, there is a need for increased understanding 
about the nature of cfDNA variants derived from different sources.

 ¡ This analysis leverages data from the Circulating Cell-free Genome Atlas study 
(NCT02889978)—a prospective, multi-center, longitudinal observational study designed to 
develop a single blood test for multiple types of cancer across stages—to examine cfDNA 
variant fragment lengths across >10 tumor types and describe the nature of the associated 
cfDNA variants.

METHODS
Sample Processing
Plasma samples (N=1406) were evaluated from participants with 
cancer (n=845) and without cancer (n=561); the breakdown of 
cancer types is depicted in Table 1. 

 ¡ cfDNA and genomic DNA from white blood cells (WBCs) 
were subjected to a high-intensity targeted sequencing 
panel (507 genes, 60000X) with error-correction; 533 
samples also had matched tumor biopsy tissue that were 
subjected to whole-genome sequencing (30X).

Variant Classification
 ¡ Somatic single-nucleotide variants (SNVs) that passed 

noise filters were identified and classified using the 
sequencing results into one of four categories: 

 ¡ Tumor biopsy-matched (TBM; present in cfDNA and biopsy) 

 ¡ WBC-matched (WM; present in cfDNA and WBC) 

 ¡ Non-matched (NM; low probability [P<0.01] of being WBC-derived)

 ¡ Ambiguous (AMB; unidentifiable source).

 ¡ Classification of cancer versus non-cancer status was accomplished using a joint model 
between observed alternate cfDNA and WBC allele counts given depth (Figure 1); treating both 
cfDNA and WBC frequencies as joint observations from a pair of unknown true frequencies, we 
estimated the likelihood that the cfDNA was derived from a different source.  

 ¡ The joint calling procedure combined a uniform prior on frequency with the observed 
counts for reference and alternate alleles to compute a posterior mean for the unknown true 
frequency conditional on the observed values. This posterior mean is always positive, and is 
used for plotting in the rest of this presentation.

 ¡ Biopsy-matched (TBM) variants were matched to variants detected in tissue samples by simple 
presence or absence at a location in the genome.  

 ¡ “Ambiguous” (AMB) was assigned if the cfDNA frequency could not be determined to be 
above the WBS frequency with >99% probability, and no alternate alleles were found in the 
WBC; in this case, there was neither positive evidence for a WBC source, nor could the variant 
be excluded with sufficient confidence to be accurate.   

Figure 1. Classification using Matched WBC Sequencing
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Plasma cfDNA allele frequencies (posterior mean) as determined by targeted panel sequencing are shown 
for each variant source (posterior mean is always positive allowing for log-scale plotting). Source is 
depicted by color (red: WBC-matched [WM]; green: tumor biopsy-matched [TBM]; pink: ambiguous [AMB]; 
blue: non-matched [NM]). To more clearly show each category, in (B) every SNV is plotted in gray as a 
background, and each category is then overplotted in a separate panel.  Each dot represents a single SNV.

Statistical Modeling of Source Prediction Based on 
Fragment Lengths 

 ¡ In all samples, fragment lengths of molecules containing reference and alternate alleles for 
SNVs were recorded.

 ¡ A statistical model based on fragment lengths was built to predict the likelihood that an SNV 
belonged to a WBC-like source, without using the WBC sequencing results.

 ¡ This statistical model was constructed as a mixture model: within each individual, a variant 
was either from a tumor-derived source or a blood-derived source.  
 � Under the assumption that the variant is from a given source, the fragment lengths 

of molecules supporting that variant are each assigned a likelihood from that source 
distribution based on the density. Aggregating the likelihood over all fragments for 
a variant, we compared the total likelihood for the observed data coming from one 
source to the likelihood that the variant was derived from another source to estimate 
the likelihood that a variant was derived from one source or the other.

 � A latent variable representing the overall mixture probability within a sample (ie, 
the probability that a randomly selected variant comes from a given source) was 
constructed as part of the model, and individual variant cluster memberships 
(responsibilities) were computed by means of an Expectation Maximization algorithm 
run until convergence.  

 ¡ Likelihoods of fragments of a given length from a given distribution were obtained from an 
estimated density of fragment lengths for each case. To establish a density for reference 
alleles, an Epanechnikov kernel was applied to the distribution of reference fragment lengths 
across samples to estimate density. For alternate alleles, a transformation of this density 
matching the observed typical distribution of alternate allele lengths in biopsy matched variants 
was generated: this avoided overfitting by restricting the degrees of freedom available in the 
density.   

 ¡ Figure 2 depicts the four observed size distributions of the plasma DNA fragments:
 ¡ Tumor biopsy-matched variants demonstrated the expected tumor-like shift to the left in 

the fragment length distribution.2,3

 ¡ Interestingly, non-matched variants showed the same fragment length shift, suggesting 
that they are likely not noise, but rather may be variants related to the cancer that were 
not present in the particular biopsy sample.12

 ¡ As expected, WBC-matched variants showed minimal shift in fragment length distribution.  
 ¡ Variants unable to be called (AMB) demonstrated intermediate fragment lengths.

 ¡ An illustration of the operation of the model is shown in Figure 3 using two participant 
examples: each variant in the given participant sample was plotted showing the frequency 
versus responsibility (source probability) for coming from the WBC-matched population of 
variants. 

 ¡ Individual variants of higher frequencies showed clear classification into categories, 
whereas lower frequency variants had intermediate responsibilities from the model. 

 ¡ The participant shown in Figure 3A-C (metastatic esophageal cancer, age 61 years) shows the 
expected fragment length shift (Figure 3C).

 ¡ By contrast, in another participant (Figure 3D-3F; age 55 years, metastatic lung cancer) large 
differences in fragment length were not present (Figure 3F), limiting the ability to classify 
variants by means of fragment length within this individual.

Figure 2. Observed Fragment Length Distributions by Variant Category
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Using the definitive classification 
derived from matched WBC and 
tumor tissue, the distribution of 
fragment lengths was plotted for 
each category.  WBC matched 
variants had fragment lengths for 
both reference and alternate alleles, 
whereas tumor biopsy matched 
(TBM) variants showed an excess of 
shorter fragment lengths. Variants 
not matched to tumor biopsies 
showed the same shift, suggesting 
that they are also tumor derived. 
Variants with ambiguous assignment 
showed intermediate behavior, and 
thus were likely a mixture of types.

Figure 3. Classification within Individual Participant Samples
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Examples of classification within individual participant samples: Participant A is depicted in A-C and 
Participant B in D-F. (A) Variants classified by fragment length into likely WM (responsibility near 1) and 
likely tumor derived (NM and TBM), responsibility near 0. Variants with very few alternate alleles were 
difficult to classify with certainty using fragment length; variants difficult to classify by fragment length 
were mostly resolved by matched WBC sequencing. (B) Variants showing WBC frequency matching. (C) 
Fragment length distributions by allele showing that within Sample A the distributions were very different 
by category. (D) Variants classified by fragment length into likely WM and likely tumor-derived. Note 
that within Sample B this yielded poor classification performance. (E) Variants showing WBC frequency 
matching. (F) Fragment length distributions by allele showing that within Sample B the distributions were 
not very different even for tumor biopsy-matched variants.
WM, WBC-matched; TBM, tumor biopsy-matched; AMB, ambiguous; NM, non-matched.
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CONCLUSIONS

 ¡ Characterizing the sources of cfDNA variants using high-depth, 

error-corrected sequencing (per-site error rate of <0.001) identified 

WBC-derived variants with low probability of error.

 ¡ By contrast, because most fragment length distributions from 

varied sources overlapped, fragment length alone did not strongly 

distinguish tumor-derived from WBC-derived variants.

 ¡ Therefore, to detect non-metastatic tumors, the lowest possible 

frequency of mutations needs to be analyzed reliably to find the 

lowest ctDNA fraction cancer individuals against this background. 

 ¡ Together, these data suggest that source prediction based on 

fragment length alone is less robust than source assignment using 

individual-matched WBC sequencing, highlighting the importance 

of accounting for CH-derived SNVs when using targeted cfDNA-

based approaches for cancer detection.

Table 1. Sample Breakdown

Group N
Non-cancer 561

Lung 118
Breast 339

Prostate 69
Colorectal 45

Uterine 27
Pancreas 26

Renal 26
Esophageal 24
Lymphoma 22
Head/Neck 19

Ovarian 17
Remaining* 113

*Cancers with ≤15 samples each.

References
1. Zheng YW1, Chan KC, Sun H, et al. Nonhematopoietically derived DNA is shorter than hematopoietically derived 

DNA in plasma: a transplantation model. Clin Chem. 2012 Mar;58(3):549-58.
2. Jiang P, Chan CW, Chan KC, et al. Lengthening and shortening of plasma DNA in cancer. Proceedings of the 

National Academy of Sciences Mar 2015, 112 (11) E1317-E1325.
3. Underhill HR, Kitzman JO, Hellwig S, et al. Fragment Length of Circulating Tumor DNA. PLoS Genet. 2016 Jul 

18;12(7):e1006162.
4. Adalsteinsson VA, Ha G, Freeman SS, et al. Scalable whole-exome sequencing of cell-free DNA reveals high 

concordance with metastatic tumors. Nat Commun. 2017 Nov 6;8(1):1324.
5. Przybyl J, Chabon JJ, Spans L, et al. Combination Approach for Detecting Different Types of Alterations in 

Circulating Tumor DNA in Leiomyosarcoma. Clin Cancer Res. 2018 Jun 1;24(11):2688-2699.
6. Liu J, Chen X, Wang J, et al. Biological background of the genomic variations of cf-DNA in healthy individuals. 

Annals of Oncology, mdy513.
7. Hu Y, Ulrich BC, Supplee J, et al. False-Positive Plasma Genotyping Due to Clonal Hematopoiesis. Clin Cancer Res. 

2018 Sep 15;24(18):4437-4443.
8. Genovese G, Kähler AK, Handsaker RE, et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA 

sequence. N Engl J Med. 2014 Dec 25;371(26):2477-87.
9. Coombs CC, Zehir A, Devlin SM, et al. Therapy-Related Clonal Hematopoiesis in Patients with Non-hematologic 

Cancers Is Common and Associated with Adverse Clinical Outcomes. Cell Stem Cell. 2017 Sep 7;21(3):374-382.e4.
10. Jaiswal S, Fontanillas P, Flannick J, et al. Age-related clonal hematopoiesis associated with adverse outcomes. N 

Engl J Med. 2014 Dec 25;371(26):2488-98.
11. Surveillance, Epidemiology, and End Results (SEER) Program (www.seer.cancer.gov) SEER*Stat Database: 

Incidence - SEER 18 Regs Research Data + Hurricane Katrina Impacted Louisiana Cases, Nov 2017 Sub 
(2000-2015) - Linked To County Attributes - Total U.S., 1969-2016 Counties, National Cancer Institute, DCCPS, 
Surveillance Research Program, released April 2018, based on the November 2017 submission.

12. Gerlinger M, Rowan AJ, Horswell S, et al. Intratumor heterogeneity and branched evolution revealed by multiregion 
sequencing. N Engl J Med. 2012 Mar 8;366(10):883-892. 

Disclosures: All authors are or were employees of GRAIL, Inc. with stock/options to own stock in 
the company.

©GRAIL, Inc., 2019. GRAIL is a registered trademark of GRAIL, Inc.  
All rights reserved.

RESULTS
 ¡ A total of 21,604 SNVs were identified in the cancer and non-cancer samples: 4% were TBM, 

68% WM, 19% NM, and 8% AMB (Table 2); the number of samples (non-mutually exclusive) 
that contributed to each category was 152, 1338, 499, and 761, respectively.

Table 2. Variant Characteristics

SNV Category, 
Sample Type

No. SNV  
Identified,  

n (%) 

No. Samples  
with SNV  

(Total Samples)

Reference Allele 
Length,  

Median (SD)

Alternate Allele 
Length,  

Median (SD)

Tumor-matched
Cancer
Non-cancer

811 (4)
811 
N/A

152 (1406) 
152 (561) 

N/A
167 (16.3)

N/A
156 (22.2)

N/A

WBC-matched
Cancer
Non-cancer

14,788 (68)
9244
5544

1338 (1406)
805 (561)
533 (845)

168 (16.3)
169 (14.8)

169 (14.8) 
69 (14.8)

Non-matched
Cancer
Non-cancer

4197 (19)
4071
126

499 (1406)
400 (561)
99 (845)

167 (17.8)
169 (16.3)

158 (20.8)
167 (17.8)

Ambiguous
Cancer
Non-cancer

1808 (8)
1,322
486

761 (1406)
497 (561)
264 (845)

166 (17.8)
168 (14.8)

164 (19.3)
169 (14.8)

 ¡ Across SNV categories, the median (SD) length of fragments containing the reference allele 
was 167 (16.3). In samples derived from cancer participants, the median (SD) fragment lengths 
of alternate alleles were 156 (22.2; TBM), 169 (14.8; WM), 158 (20.8; NM), and 164 (19.3; AMB) 
(Table 2). 

 ¡ AMB and WM median SNV fragment lengths were similar to that of the reference allele, 
suggesting that fragment length shifts were minimal in SNVs derived from CH. 

 ¡ Fragment lengths of TBM and NM SNVs were similar; further, most NM SNVs came from 
cfDNA samples in the cancer cohort, suggesting that NM SNVs may be tumor-derived. 

 ¡ Most SNVs occurred in the WM category, which was expected in a population with a 
median (SD) age of 61 (12.2) due to age-related CH.8-10

 ¡ The prediction model distinguished TBM from WM SNVs with an AUC of 0.87. 

 ¡ However, at a specificity of 98% (to match filtering based on WBC sequencing), false-
negative rates were 35% (TBM; Figure 4A) and 52% (NM; Figure 4B).

Figure 4. Predictive Statistics for Distinguishing Tumor- Versus WBC-Derived Variants 
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Without white blood cell sequencing, WBC-matched variants are intermixed with other variants passing 
the noise filter.  A) Using fragment length information, it is possible to partially classify WM variants from 
biopsy matched variants, however at high specificity, many biopsy matched variants are also lost.  B) 
Similarly, the variants not matched in WBC and not matched to tumor can be partially classified by 
fragment length, but many are lost at high specificity.
WM, WBC-matched; TBM, tumor biopsy-matched; NM, non-matched.


