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INTRODUCTION
 ¡ Hematologic malignancies, such as leukemia, lymphoma, and multiple 

myeloma, and their precursor conditions, such as monoclonal 
gammopathy of undetermined significance (MGUS) and monoclonal 
B-Cell lymphocytosis (MBL), are highly prevalent1 as well as diverse in 
biology.2,3

 ¡ Hematologic malignancies arise as a result of deregulated differentiation in 
hematologic cell lineages.4 A blood test that accurately and simultaneously 
detects and distinguishes the various types of hematologic conditions 
could provide a convenient approach to guide diagnostic workup and 
treatment selection.

 ¡ Recent results from the second sub-study of the Circulating Cell-
free Genome Atlas study (NCT02889978) demonstrate that a targeted 
methylation- and cfDNA-based multi-cancer early detection (MCED) test 
detects >50 cancers with high specificity (>99%) and accurately predicts 
the tissue of origin (TOO) in >90% of eligible cases.4

 ¡ Here, we applied the same targeted methylation-based technology 
to refine cancer detection and TOO prediction accuracy for five major 
hematologic malignancies, and to identify methylation signatures specific 
to the developmental lineages of these conditions.

METHODS
 ¡ cfDNA samples were from the second pre-specified sub-study of CCGA, 

which was designed for targeted methylation assay validation. During 
the study period, only training set samples were available and used for 
analysis. For classification model training, we also included tumor tissue 
samples from an in-house tissue biopsy reference database. 

 ¡ Samples used to train the custom classification model for hematologic 
malignancies were from participants enrolled with a hematologic 
cancer diagnosis (cancer cases; n=301) and participants enrolled 
without a cancer diagnosis (non-cancer controls; n=2,687). 154 blood 
cell samples or tissue FFPE samples of hematologic malignancies 
were also included.

 ¡ Classification performance was evaluated on cfDNA samples not 
previously used for targeted methylation panel design.5 In total, cfDNA 
samples from 185 participants with hematologic cancers and 1,998 
non-cancer controls confirmed without cancer diagnosis at the one 
year follow-up were included for performance evaluation.

 ¡ Five hematologic classes were used as training labels for classifier 
training: myeloid neoplasm, circulating lymphoma, Hodgkin lymphoma, 
Non-Hodgkin lymphoma, and plasma cell neoplasm.

 ¡ A cross-validated mutual information-based algorithm was used to identify 
features that discriminated between the five hematologic classes and the 
control class.

 ¡ A multinomial classifier was then trained to detect the presence or 
absence of cancer at the target specificity of 99.5% and predict TOO 
among the five major hematologic cancers and non-cancers using six-fold 
cross-validation.

 ¡ A low dimensional representation of the methylation features active for the 
final classifier was generated using the UMAP method,6 which preserves 
the topology of high dimensional data.

 ¡ Scatter plots were used to visualize the relationship between the spatial 
distribution of feature embeddings and the model’s class probabilities.
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CONCLUSIONS
 ¡ Methylation features of cfDNA in patients with 

hematologic malignancies delineated five major clusters 
that reflected hematologic lineages. 

 ¡ Lineage-specific signals followed a gradient suggestive 
of variation in disease-related methylation or tumor DNA 
shedding. 

 ¡ The custom classifier for hematologic malignancies 
offers a convenient way to simultaneously detect and 
distinguish five major hematologic malignancies, which 
could help facilitate clinical diagnosis and treatment 
selection.

 ¡ Most cfDNA arises from circulating blood cells; 
therefore, characterizing methylation changes in 
conditions that are precursors of hematologic cancer 
may be important for improving performance of the 
multi-cancer early detection test. The findings from 
this study will guide further efforts toward removing 
interfering biological signals from cfDNA-based cancer 
detection assays and achieving even more sensitive 
detection of multiple cancers.
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RESULTS
 ¡ The hematologic-specific classifier achieved an overall specificity of 

>99.4% [95% CI: 99.0-99.7%] in controls, and a sensitivity of 74.3% 
[67.4-80.5%] for hematologic cancers. 

 ¡ The sensitivities by hematologic classes were 45.8% [5.3-91.6%] for 
myeloid neoplasms, 76.5% [61.3-88.0%] for circulating lymphomas, 
86.1% [54.7-98.7%] for Hodgkin lymphomas, 71.3% [60.8-80.3%] for 
other Non-Hodgkin lymphomas, and 78.9% [61.6-91.0%] for plasma cell 
neoplasms (Figure 1A). For lymphomas (Hodgkin lymphomas and Non-
Hodgkin lymphomas), the sensitivities by stages were 25.6% [7.2-54.0%] 
for stage I, 84.6% [65.5-95.5%] for stage II, 72.8% [52.4-88.0%] for 
stage III, and 83.9% [66.6-94.4%] for stage IV (Figure 1B).

Figure 1. Hematologic Classifier Sensitivity at the 99.5% Target 
Specificity Level. The number in the class label indicates the 
number of samples. The error bars show the 95% confidence 
intervals. (A) Sensitivity by hematologic class. (B) Sensitivity by 
stage for Hodgkin and Non-Hodgkin lymphomas.

Figure 2. Tissue of Origin Prediction for Cases Predicted As 
Hematologic Cancers. Numbers in each box represent the total 
number of predicted TOO. Color corresponds to the proportion 
of predicted TOO, as indicated to the right of the plot. Percent 
correct predictions from the total predictions for each cancer type 
are indicated to the right of the plot. 

 ¡ TOO prediction was assessed on cancer cases that were correctly detected 
by the classification model. The hematologic-specific classifier achieved 
an overall TOO prediction accuracy of 87.7%, with Hodgkin lymphoma 
and myeloid neoplasm showing the highest prediction accuracy (100%) 
followed by plasma cell neoplasm (96.4%), Non-Hodgkin lymphoma 
(85.9%), and circulating lymphoma (80%, Figure 2).

 ¡ Of the 11 non-cancer controls (0.55% of non-cancer controls) who 
were classified as having hematologic cancers, five were predicted as 
circulating lymphoma, and six were predicted as other Non-Hodgkin 
lymphoma (<1% false positive rate), most showing confident TOO signal 
localizing to the predicted heme class (≥50% of total probability mass).

 ¡ Proximity in low-dimensional UMAP space (embedding dimensions) of 
input features showed that the majority of hematologic malignancies 
separated into five major clusters reflecting developmental lineages and 
disease ontogeny (Figure 3A). The vast majority of non-cancer controls 
were clustered separate from the hematologic cancers (Figure 3B). 

Figure 3. Hematologic Malignancies Are Clustered Into 5 Major 
Groups. Classification features were visualized using the UMAP 
method. (A) Hematologic malignancy cancer samples visualized 
by predicted versus actual TOO label. The shape of the symbol 
represents the actual hematologic class labels. The color of the 
symbol represents the predicted class label. (B) The same plot 
except that non-cancer controls are shown using contour density 
to reveal the rest of hematologic cancer samples.

 ¡ The position of samples within each hematologic cluster correlated with 
the classification score. For individual cases with significant cancer signal 
(classification score >0.5), which are shown as light blue to red symbols 
in Figure 4A and 4B, there was strong positive correlation between their 
UMAP embedding localization and classification score (Figure 4C).

Figure 4. The Correlation Between Classification Scores and the 
Spatial Localizations on UMAP Embedding Space. (A) Hematologic 
cancer samples visualized by predicted versus actual TOO label. 
The color of the symbol represents the cancer probability of the 
sample. The shape of the symbol represents the class label of 
the sample. (B) The same plot except that non-cancer controls 
are shown using contour density to reveal the rest of hematologic 
cancer samples. (C) The correlation between the localization and 
the classification score by participant cancer status. The x-axis is 
the logit transformed probability of a sample being cancer. The 
y-axis is the Euclidean distance of a sample to the centroid of 
the non-cancer population in the UMAP embedding space. The 
non-cancer centroid is computed by averaging each embedding 
dimension of all non-cancer samples.
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