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INTRODUCTION
¡ A noninvasive cell-free DNA blood test detecting multiple cancers at earlier stages (stages I–III) could decrease 

cancer mortality. 
¡ For a multi-cancer test to be effective at population scale, it should:
¡ Detect clinically significant cancers with a low false positive rate (ie, very high specificity [>99%]) to limit

overdiagnosis;
¡ Identify a specific tissue origin to direct appropriate diagnostic work-up for detected cancers.1,2

¡ In earlier discovery work, whole-genome bisulfite sequencing outperformed whole-genome and targeted sequencing
approaches for multi-cancer detection across cancer stages at high specificity3; targeted methylation was selected
for further assay development, including training and internal cross-validation.

¡ Presented here are data from a second pre-specified substudy of Circulating Cell-free Genome Atlas (CCGA;
NCT02889978), in which a multi-cancer detection and tissue-of-origin (TOO) localization using targeted bisulfite
sequencing of plasma cfDNA to identify methylomic signatures was validated in preparation for returning results in a
clinical setting.

METHODS
¡ The primary analysis population used for this validation was comprised of 1,264 participants derived from the CCGA

and STRIVE study populations (Figure 1); CCGA is a multi-center, case-control, observational study with longitudinal
follow-up (15,254 participants enrolled: 56% cancer, 44% non-cancer) and STRIVE is a multi-center, prospective,
cohort study enrolling women undergoing screening mammography (99,259 participants enrolled).
¡ Importantly, to improve the resolution of the targeted high specificity (ie, >99%), non-cancer samples from the

STRIVE study population were also analyzed.
¡ Previously, we presented cross-validated results from a training set analysis of 3,583 participants derived from CCGA

and STRIVE (CCGA: 1,530 cancer, 884 non-cancer; STRIVE: 1,169 non-cancer participants).4

Figure 1. Detail of Validation Cohort from Second Substudy of CCGA
Second CCGA Substudy
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STRIVE
1,587 Training + 615 Validation

Clinical Evaluable, n=592

Analyzable, n=590

Secondary Analysis Population
n=438
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Primary Analysis Population
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(337 non-cancer)

� 1,587 randomized for training

� 9 (1.5%) unlocked
� 14 (2.3%) ineligible/not evaluable

� 2 (<1%) assay not evaluable

� 152 (25.8%) reserved for future
analyses†

� 101 (23.1%) follow-up not available

*At enrollment, prior to confirmation of cancer versus non-cancer status.
†Samples reserved for future analysis include, for example, a cohort of participants recruited from hematology clinics meant to understand
cfDNA signal in premalignant or other hematologic conditions.
¡ The validation set from the second substudy shown in Figure 1, was used to validate a trained and locked classifier for

determining cancer versus non-cancer and TOO based on a targeted methylation sequencing approach.
¡ Analysis followed a pre-specified statistical analysis plan, with clinical and assay data locked and blinded to

each other.
¡ This validation set of 1,264 evaluable samples included 610 non-cancer samples (273 from CCGA and 337 from

STRIVE), and 654 cancer samples (CCGA) from >50 cancers, which were grouped for reporting purposes; the
pre-specified subset of cancers was: anal, bladder, colorectal, esophageal, head and neck, liver/bile-duct, lung,
lymphoma, ovary, pancreatic, plasma cell neoplasm, stomach (356 cancer [all stages]).
¡ The list of pre-specified high detection rate cancer types (ie, those with sensitivity >50% across stages I–III in

training) in the validation set versus the cross-validated training set4 analyses differed by a single cancer type for
consistency with the validation set TOO analysis; specifically, this resulted in the addition of bladder cancer and the
removal of hormone-receptor negative breast cancer.

¡ Plasma cfDNA was subjected to a cross-validated targeted methylation approach that included high-efficiency
methylation chemistry to enrich for methylation targets and subsequent machine learning classifier for determining
cancer status and TOO (Figure 2).
¡ Observed methylation fragments characteristic of cancer and TOO were combined across targeted regions and

assigned a relative probability of cancer and of a specific TOO; precision was defined as the fraction of correct calls.
¡ Classifier was trained and locked, including decision thresholds, targeting above 99% specificity with some

allowance for statistical variability.

Figure 2. Methylation Database: Target Selection and Machine Learning Algorithm
Machine Learning Algorithm
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RESULTS
 ¡ The trained classifier targeting specificity of >99% (see Methods) achieved specificity of 99.8% in the cross-
validated training set and 99.3% in the independent validation set (P=0.095).
¡ Therefore, assay performance reflected a consistent false positive rate of <1%.

¡ Importantly, the assay specificity and sensitivity were consistent between the cross-validated training set and
independent validation set across stages (Figure 3), confirming that training data were not overfitted; this was also
consistent for all cancer types.

Figure 3. Stage-specific Performance Consistency Between Training and Test Sets 
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¡ At 99.3% specificity, the sensitivity (95% CI) for all cancer types was 55% (51–59%), and for the pre-specified
cancer types was 76% (72-81%).

¡ At each  stage, cancer detection for all cancer types combined (sensitivity [95% CI]) was 18% (13–25%) in stage
I (n=185), 43% (35–51%) in stage II (n=166), 81% (73–87%) in stage III (n=134), and 93% (87–96%) in stage IV
(n=148) (Figure 4).

¡ Among pre-specified high-signal cancer types, the stage-specific cancer detection was 39% (27–52%) in
stage I (n=62), 69% (56–80%) in stage II (n=62), 83% (75–90%) in stage III (n=102), and 92% (86–96%) in
stage IV (n=130).

Figure 4. Overall Cancer Detection by Stage   
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¡ For the most common cancer types (that also have the most samples) breast, lung, and colorectal, cancer detection
was 39% (30–50%; n=104), 66% (56–75%; n=111), and 77% (64–88%; n=53), respectively.

¡ Where a cancer signal was detected, cancer was localized to an anatomic site (ie, tissue type identified) for 96%
(344/359) of cases; of these (and consistent with training set analyses), the TOO call was correct in 93%
(321/344) of cases (Figure 5).

Figure 5. Validation Set Tissue of Origin Localization
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¡ TOO detection rates were similar across stage and slightly higher at each stage among the prespecified cancers
compared to all cancers (Figure 6).

Figure 6. Consistently High Tissue of Origin Accuracy Across Stages
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CONCLUSIONS
¡ Across stages, multiple deadly cancer types that currently have no screening paradigm were detected, and

simultaneously accurately localized to a TOO, using methylation signatures in plasma cfDNA.

¡ This was achieved with trained thresholds that resulted in a single, fixed, low false positive rate (<1%) in an
independent validation set.

¡ Importantly, results in the independent validation set were indistinguishable from the training set, demonstrating
robustness of machine learning classifier training, and no evidence of overtraining.

¡ This validation supports the feasibility of a single blood-based test that can simultaneously detect multiple
cancers and supports further clinical development for the preparation of returning results.
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