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Cancer Mortality Increases with Later Detection

*Cancer specific survival data from SEER18 ages 50+ diagnosed 2006-2015. Surveillance, Epidemiology, and End Results (SEER) Program 

(www.seer.cancer.gov) SEER*Stat Database: Incidence - SEER 18 Regs Research Data, Nov 2017. **Includes intrahepatic bile duct.
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Limitations of Current Screening Paradigms Represent an 

Opportunity for Improved Cancer Detection

5

● Low-dose computed tomography (LDCT) 

improves lung cancer mortality in high-

risk individuals
1,2

● Rate of clinical adoption remains low 

(1.9%)3,4

● Criticisms of LDCT include risk of false 

positives and logistical challenges
5

Example: Early Detection of Lung 
Cancer is a High Unmet Medical Need

● Cancer genotyping using plasma cfDNA

○ Adopted for detection of specific actionable 

mutations

○ Currently only validated for advanced cancer

○ Uses smaller targeted gene panels

● Cancer detection using plasma cfDNA

○ Aims to identify a broader cancer “signature” 

rather than specific individual mutations

● Genome-wide approaches offer additional 

information that allow early detection

● Could address the unmet medical need

1de Koning H et al. IASLC World Conference on Lung Cancer. 2018(abstr PL02.05). 2National Lung Screening Trial Research Team. NEJM. 2011;365:395-409. 3Pham 

D et al. J Clin Oncol. 2018;36(suppl; abstr 6504). 4Jemal A, Fedewa SA. JAMA Oncol. 2017;3:1278-1281. 5McCunnet RJ et al. Chest Journal. 2014;145(3):618-24.

How cfDNA-Based Tests can Improve 
Cancer Detection
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cfNA-Based Approaches to Cancer Detection

High-intensity sequencing to detect cfNAs
● Reliably detect cancer-defining cfNAs by looking broadly across 

the entire genome and at extraordinary depth to detect faint signals

Powerful machine-learning approaches
● Apply the latest tools of data science to classify participants 

according to the presence, type, and severity of cancer

Large-scale clinical studies
● Confirm clinical validity of tests through one of the largest clinical 

study programs ever conducted in genomic medicine
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The Circulating Cell-Free Genome Atlas (CCGA) Study
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CCGA is a Prospective, Longitudinal Cohort Study Designed for 
Cancer Detection

Blood samples
(all participants)

Tissue 
samples
(cancer only)

15,000+ 
participants

70% with cancer
30% without

142 Sites

Targeted sequencing cfDNA, WBCs

Whole-genome sequencing (WGS) cfDNA, 
WBCs
Targeted & whole-genome bisulfite sequencing 
(WGBS) cfDNA

Follow-up 
for 5 yrs

Whole-genome sequencing of tumor tissue

Cancer Participants: Data on cancer status & 
treatment, new cancer diagnosis, mortality

Non-Cancer Participants: Remain cancer free or 
develop new cancer diagnosis, data on cancer 
status & treatment, mortality

cfDNA, cell-free DNA; WBC, white blood cell; WGS, whole-genome sequencing; WGBS, whole-genome bisulfite sequencing.
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CCGA: Discovery, Training, and Validation for a Multi-Cancer Test

Training Set: 1,785
Clinically Locked*

Test Set: 1,010
Clinically Locked*

~15,000 planned 
participants

70% cancer : 30% non-cancer

12,200 reserved for future 
studies

2,800 participants:
Prespecified case-control 

substudy
1,628 cancer; 1,172 non-cancer

*5 participants not clinically locked were excluded.

FPI: 08/2016
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CCGA: Prespecified Case-Control Substudy of 2,800 Participants

Training Set: 1,785
Clinically Locked*

Test Set: 1,010
Clinically Locked*

1,733 Clinically Evaluable
● 984 Cancer (127 Lung Cancer)

● 878 stage I-IV
● 580 Non-Cancer
● 169 Non-Cancer Assay Controls

980 Clinically Evaluable
● 576 Cancer (47 Lung Cancer)

● 478 stage I-IV
● 368 Non-Cancer
● 36 Non-Cancer Assay Controls

1,406 Analyzable with Assay Data 
● 845 Cancer (118 Lung Cancer)
● 561 Non-Cancer

834 Analyzable with Assay Data 
● 472 Cancer (46 Lung Cancer)
● 362 Non-Cancer

● Eligibility criteria (3%)

● Stage 0 or missing stage (6%)
● Other clinical reasons (<1%)
● Unevaluable for  ≥1 assays (3%)
● Non-cancer assay controls 
(10%)

● Eligibility criteria (3%)

● Stage 0 or missing stage (10%)
● Other clinical reasons (0%)
● Unevaluable for ≥1 assays (1%)
● Non-cancer assay controls (4%)

Samples excluded due to:Samples excluded due to:

*5 participants not clinically locked were excluded.
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Comparable Cancer and Non-Cancer Groups

Training Test
Non-Cancer Cancer* Lung Cancer Non-Cancer Cancer* Lung Cancer

Total, n (%) 580 984 127 368 576 47

Age, Mean ± SD (years) 60 ± 13 61 ± 12 67 ± 9 59 ± 14 62 ± 12 69 ± 8

Sex (%)
Female 452 (78%) 697 (71%) 69 (54%) 238 (65%) 363 (63%) 25 (53%)

Race/Ethnicity (%)
White, Non-Hispanic 489 (84%) 846 (86%) 112 (88%) 312 (85%) 475 (82%) 37 (79%)

African American 47 (8%) 67 (7%) 6 (5%) 25 (7%) 40 (7%) 5 (11%)

Hispanic, Asian, Other 44 (8%) 71 (7%) 9 (7%) 31 (8%) 61 (11%) 5 (11%)

Smoking Status (%)
Never-smoker 330 (57%) 484 (49%) 19 (15%) 185 (50%) 290 (50%) 3 (6%)

BMI
Normal/Underweight 156 (27%) 266 (27%) 41 (32%) 86 (23%) 162 (28%) 20 (43%)

Overweight** 184 (32%) 319 (32%) 48 (38%) 126 (34%) 190 (33%) 15 (32%)

Obese*** 240 (41%) 398 (40%) 38 (30%) 155 (42%) 224 (39%) 12 (26%)

● Clinically evaluable cancer and non-cancer groups were comparable with respect to age, sex, race/ethnicity, and BMI
● A higher proportion of participants with lung cancer were male and were ever-smokers. 

*Cancer types by training/test: Breast (410/201), lung (127/47), prostate (74/58), colorectal (51/46), renal (29/18), uterine (28/9), pancreas (27/23), esophageal 
(25/8), lymphoma (25/22), head & neck (21/12), ovarian (21/7), hepatobiliary (15/16), melanoma (15/12), cervical (14/11), multiple myeloma (14/21), leukemia 
(13/16), thyroid (13/10), bladder (12/3), gastric (12/15), anorectal (7/3), and unknown primary/other (22/18). **BMI≥25. ***BMI≥30.
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Stage Distribution and Method of Diagnosis were Consistent in 
Training and Test Sets

Training Set Test Set

Cancer (n=984)
Lung Cancer 

(n=127)
Cancer (n=576)

Lung Cancer 
(n=47)

Overall Clinical Stage (n, %)

0* 56 (6%) 1 (<1%) 34 (6%) 0 (0%)

I 300 (30%) 23 (18%) 165 (29%) 12 (26%)

II 249 (25%) 14 (11%) 142 (25%) 5 (11%)

III 165 (17%) 39 (31%) 76 (13%) 10 (21%)

IV 164 (17%) 47 (37%) 95 (16%) 19 (40%)

Non-Informative** 50 (5%) 3 (2%) 64 (11%) 1 (2%)

Method of Dx (n, %)

Diagnosed by Screening§ 354 (36%) 23 (18%) 202 (35%) 7 (15%)

Diagnosed by Clinical Presentation¶ 630 (64%) 104 (82%) 373 (65%) 40 (85%)

Broad distribution of stages in training and in test sets 

*DCIS/CIS. **Staging information not available. §Percent screen-detected in training/test sets for breast cancer: 58%/58%, colorectal cancer: 29%/37%, lung cancer: 
18%/15%, prostate cancer: 91%/90%, and other cancers 4%/4%. ¶Clinical presentation includes all cancers not detected by screening (ie, detected symptomatically or as 
incidental findings).
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Prototype Sequencing Assays Used to Comprehensively 
Characterize Cancer-Specific cfDNA Signals

● All major somatic and epigenetic cfDNA features characterized 
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panel
● 60,000X 

depth
● 3,000X 

unique 
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● Aging
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cfDNA, cell-free deoxyribonucleic acid; WBC, white blood cell; WGS, whole-genome sequencing; WGBS, whole-genome bisulfite sequencing.

WGBS
Classifier



Potential Source of False Positives: Clonal Hematopoiesis
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91%

96%96%
Genovese et al, 2014
~100X

91%CCGA
~60,000X
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A● Variants at lower VAFs will require 
high-depth sequencing of WBCs to 
effectively exclude this confounding 
signal in cfDNA-based assays

● Ultra-deep sequencing (this study 
[Training set]): <10% of WBC-
matched variants at >1% VAF 

● Previous study sequencing at ~100X: 
96% of variants at >1% variant allele 
frequencies (VAF)1

1Genovese et al. NEJM. 2014;371:2477-2487.
CHIP, clonal hematopoiesis of indeterminate potential; cfDNA, cell-free DNA; WBC, white blood cell; gDNA, genomic DNA.

● Early detection requires a low limit of 
detection, wherein low VAF CHIP is 
a confounding signal
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Majority of cfDNA Variants Are WBC-Matched Clonal Hematopoiesis

Age (years)

Cancer Non-Cancer

1Swanton C et al. J Clin Oncol. 2018;36(suppl; abstr 12003).
cfDNA, cell-free DNA; WBC, white blood cell; SNV, single-nucleotide variant; indel, insertion or deletion.

● In Training set, average non-tumor WBC-matched cfDNA somatic variants (SNVs/indels) were:

○ 98% of all variants in non-cancer group

○ 71% in total cancer group

○ 54% in lung cancer group

● Number of WBC variants is positively associated with age in cancer and non-cancer groups1
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Simulating Existing Assays1: Not Optimized for Screening

● CCGA [Training set] used for simulation analysis: 

○ 561 non-cancer; 118 participants with lung cancer

● Testing a single location (emulating ddPCR)

○ KRAS:p.G12X

○ Small number of cancer participants detected

○ Few non-cancer participants

● NGS panel reporting 813 clinically actionable variants 

from 30 genes
2

○ More cancer participants detected

○ Many non-cancer participants detected due to 

WBC/CHIP variants

● CCGA targeted NGS assay with coverage of 507 genes 

and combined cfDNA and WBC sequencing

○ Joint cfDNA/WBC ML calling to remove WBC/CHIP 

variants

○ Increased detection of cancer participants

○ Reduced false-positives (specificity set at 98%)

No Signal Detected Signal Detected

Non-Cancer 

(n=561)

Lung Cancer 

(n=118)

1Oxnard GR et al. J Clin Oncol. 2018;36(suppl; abstr LBA8501). 2Chakravarty D. JCO Precis Oncol. 2017;doi: 10.1200/PO.17.00011.

ddPCR, digital-droplet PCR; cfDNA, cell-free DNA; WBC, white blood cell; CHIP, clonal hematopoiesis of indeterminate potential; NGS, next generation sequencing; ML, 

machine learning.

● CCGA targeted NGS assay with coverage of 507 genes 

and combined cfDNA and WBC sequencing

○ Joint cfDNA/WBC ML calling to remove WBC/CHIP 

variants

○ Increased detection of cancer participants

○ Reduced false-positives (specificity set at 98%)

● NGS panel reporting 813 clinically actionable variants 

from 30 genes
2

○ More cancer participants detected

○ Many non-cancer participants detected due to 

WBC/CHIP variants



Sensitivity Consistent Across Assays and at High Specificity—
Training Set
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● In age-matched controls, there is expected to 

be a latent rate of 1% of undiagnosed cancer

○ Some of those cancers will be detectable 

by the prototype assays and classifiers

○ The longitudinal design of the study allows 

us to correctly assign cancer status to 

individuals post-enrollment once 

diagnoses are reported from normal 

clinical practice

● We conservatively look at 98% specificity to 

account for these latent cases

○ Specificity will continue to evolve as follow-

up is completed

95%98%

WGS, whole-genome sequencing; WGBS, whole-genome bisulfite sequencing. 17
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High Specificity (>99%) is Feasible
5-year follow-up will enable identification of participants who are subsequently diagnosed

575
No notable cancer-like 
signal* (test negative or 

absent)

2
No cancer identified
Follow-up ongoing

*Notable cancer-like signal defined as ≥2 assays with significant abnormalities compared to the typical non-cancer population, or known cancer drivers present with  ≥1 significant 
assay abnormality.

Training:
580

Control Participants 

5 (<1%) 
Notable cancer-like 

signal* present

3 
Confirmed cancer

Lung IV
Endometrial  II

Ovarian III 

Test:
368

Control Participants 

365
No notable cancer-like 
signal* (test negative or 

absent)

3
No cancer identified
Follow-up ongoing

3 (<1%) 
Notable cancer-like 

signal* present
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Consistent Results Across Assays and Between Training and 
Test Sets

Training

Stage IV

117

245

Targeted

WGBS

WGS

Sensitivity Reported at 98% Specificity

● Cancers that had >40% detection in training included lung, HR-negative breast, colorectal, 
esophageal, head & neck, hepatobiliary, lymphoma, ovarian, and pancreatic cancers, and 
multiple myeloma 

131

64

Stage I-III
Test

Training

Test

0% 20% 40% 60% 80% 100%

NSubgroup

Signal was also consistent in low-signal cancers (<10% in training on any of the three assays: prostate, thyroid, gastric, melanoma).
WGS, whole-genome sequencing; WGBS, whole-genome bisulfite sequencing.
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Early- and Late-Stage Cancers Detected in the Test Set

0% 20% 40% 60% 80% 100%
Sensitivity (95% CI; WGBS Assay) Reported at 98% Specificity

Cancer Type N

Breast (HR-)

Colorectal

Esophageal

Hepatobiliary

Ovarian

Lung

Pancreas

Head & Neck

Lymphoma

Multiple Myeloma

19
3

29
10

8
6

5
2

27
19

8
14

13
5

8

7
● Detection was observed in across all 

stages

○ Sensitivity was higher in Stage IV 

cancers

○ 45% cancers detected were 

Stages I-II

● Strong detection of cancers with high 

(>50%) cancer-specific mortality rates at 

five years1

7
5

15-year cancer-specific mortality rates for persons aged 50-79 from SEER18, 2010-2014; https://seer.cancer.gov.
WGBS, whole-genome bisulfite sequencing.
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Lung Cancer Detection by Smoking Status and Histologic Subtype in 

the Test Set

● 93% (43/46) of participants with lung cancer were ever-smokers

● Signal was detected in ever-smokers, as well as in never-smokers

○ Of 3 never-smokers, 2 were detected by the methylation assay, 1 by the WGS assay, and 3 by the targeted assay

0% 20% 40% 60% 80% 100%

Sensitivity Reported at 98% Specificity

43
Ever-smoker,

Stage I-IV

NSubgroup Smoking Status

Targeted

WGBS

WGS

WGS, whole-genome sequencing.

● Signal was also detected consistently across histologic subtypes (Stage I-IV WGBS assay reported):

○ 100% (5/5) of SCLC cases were detected

○ 65% (11/17) of SCC cases were detected

○ 60% (12/20) of adenocarcinoma cases were detected
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● Preliminary cfDNA-based blood test results detected multiple cancers, including lung, 

and across all stages—even early stages when treatment may be more effective

○ Test set confirmed the signal observed in the training set 

○ >99% specificity is feasible

■ Targeted methods require accounting for clonal hematopoiesis

○ High detection of cancers with high mortality and that lack screening paradigms or 

where screening is not well-adopted

● This approach is thus promising as a multi-cancer detection test, including for early-

stage cancers

● Further assay and clinical development in large-scale clinical studies, including CCGA, 

is ongoing

Summary

WGS, whole-genome sequencing; WGBS, whole-genome bisulfite sequencing.
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