Development of cell-free nucleic acid-based tests for detection of invasive breast cancer: The STRIVE Study

Minetta C Liu, MD,1 Steve Cummings, MD,2,3 Celine M Vachon, PhD,1 Karla Kerlikowske, MD,2 Fergus J Couch, PhD,1 Elizabeth A Morris, MD,4 Janet E Olson, PhD,4 Eric C Polley, Ph.D,4 Amy L Conners, MD,1 Richard Ellis, MD,1 Bhavika Patel,MD,4 Santo Mainone IV, MD,3 Nan Zhang, PhD,5 Christina A Clarke, PhD,5 Brian A Allen, MS,6 Tara Maddala, PhD,5 Anne-Renee Hartman, MD8

1Mayo Clinic, Rochester MN, 2Sutter Health and the S.F Coordinating Center, San Francisco, CA, 3UCSF, San Francisco, CA, 4Memorial Sloan Kettering Cancer Center, New York NY, 5Mayo Clinic, LaGrosse, WI, 6Mayo Clinic, Scottsdale, AZ, 7Mayo Clinic, Jacksonville FL, 8GRAIL, Inc. Menlo Park, CA

Rationale

Mammography (digital or tomosynthesis) is the cornerstone of screening for breast cancer, but new approaches are needed to further reduce the rate of late stage cancer diagnosed and more effectively identify women in need of additional testing and diagnostic biopsy. Circulating cell-free nucleic acids (cfNAs) shed from tumors can be isolated from the peripheral blood (FIGURE 1) and analyzed with ultra-deep and broad sequencing of cancer-associated genes1.

FIGURE 1: Blood test development will be based on a high-throughput sequencing approach (ultra-deep and ultra-broad). Blood components include, but are not limited to, plasma cell-free nucleic acids (cfNAs) mRNA isolated from circulating cells, and exosomes.

GRAIL, Inc. (www.grail.com) aims to develop blood cfNA screening tests capable of detecting many cancer types and providing information on the tissue of origin. Such tests could be used in concert with established risk factors and/or radiographic features to improve early cancer detection. Development and validation of these tests and related algorithms will require large, well-annotated prospective cohorts of asymptomatic participants. The STRIVE Study is the first of several planned prospective cohorts to be assembled for this product development.

Study Design

Overview

The STRIVE Study is a prospective cohort study of 120,000 women undergoing mammography that will be used to train and clinically validate a new blood test for breast cancer detection. Participants diagnosed with cancer and a random sample of participants without cancer will be included in training and validation analyses.

Study Objectives

• Determine the ability of a blood cfNA test and algorithm to identify breast cancer in a cohort of women undergoing screening mammography.
• Determine the ability of a blood cfNA test and algorithm to identify breast cancer in women with a higher likelihood of cancer missed by screening mammography.

Electronic questionnaire

Participants complete a cancer risk factor questionnaire (FIGURE 3) online using any electronic device.

Medical record data

Pertinent clinical information (including breast density and mammography results) and follow-up information will be transferred electronically to a central database.

Follow-up

Participants will be followed for all incident cancers for at least 30 months via rapid review of electronic pathology and health records information. Regular linkages with state and national cancer and vital statistics registries will be performed. Outreach will include newsletters and updates to the study website (www.joinstrive.com). Active follow-up will be used to confirm participant cancer status prior to sequencing.

Statistical methods

The study will be divided into training and validation phases. In the training phase, statistical machine learning techniques will be used to develop algorithms incorporating cfNA signals, clinical characteristics, or radiological features. In the validation phase, the prespecified locked algorithm developed from the training phase will be clinically validated in an independent group of women.

Implications for the Future

• The STRIVE Study will be used to train and validate new cfNA tests and related algorithms for the early detection of breast cancer and later, for multiple, other cancers.
• cfNA-based tests have the potential to improve detection in women at high risk of an occult cancer after routine breast imaging, such as women with dense breast tissue.
• A sensitive test could better identify those mammographic abnormalities that are most likely to be malignant, thereby reducing the number of unnecessary work-ups for lesions with no clinical significance.
• This effort will create a new large, prospective resource for studying the performance of contemporary screening and diagnostic mammography among population subgroups.
• The study implements a number of technologies to enable multicenter recruitment and data collection at a large scale and on a short timeline.
• In addition to remote electronic consent and online questionnaires with mobile-first design, we are developing innovative approaches for automated collection of other data, including timely follow-up for cancer diagnoses and electronic health record ingestion.
• The study is an important collaboration between academia and industry to build a prospective mammography cohort to enable a multitude of scientific inquiries.

Cohort Characteristics

Table: Characteristics of participants recruited from February to December 2017 as part of the STRIVE Study.

References and Acknowledgements


The authors thank Jason Carbon, Marisa fibigio, Emily Hallberg, Stephanie Hamilton, Fabio Ingram, Dana Kriese, Betsey Rapp, Eddie Suss, Jeneidy Schmidt, and Jusaba Van Cleve for their contributions to the acquisition of this study.

FIGURE 2. STRIVE Study schedule of events. Purple events are scheduled mammograms. Green events indicate blood collection and banking.

TABLE 1: Characteristics of participants recruited from February to December 2017 as part of the STRIVE Study.

8