Breast Cancer Cell-free DNA (cfDNA) Profiles Reflect Underlying Tumor Biology: The Circulating Cell-free Genome Atlas (CCGA) Study

BACKGROUND

- Breast cancer is the leading cause of death among women in the United States.
- Approximately 250,000 women were diagnosed with breast cancer in 2018.
- New breast screening approaches are needed to detect breast cancer early, when the prognosis is better.
- Mammography is the main screening paradigm/standard-of-care.
- Mammography is problematic in women with dense breasts, has a high rate of false positives, and can result in overdiagnosis.
- Approximately 40,000 women die each year from breast cancer in the U.S.

METHODS

- The Circulating Cell-free DNA Atlas (CCGA) Study is a cohort of 12,292 women.
- Controls were recruited from 10 institutions.
- Participants were included based on age, family history of breast cancer, and medical status.
- Blood samples were collected from all participants.
- Clinical N staging was utilized.

RESULTS

- The majority (82%) of samples from participants with cancer were stage I/II.
- Participants with breast cancer and control participants were comparable in terms of race and ethnicity and age at diagnosis.
- Assay data was available for 845 cancers (878 participants with stage information).
- The majority of participants (60%) had clinically diagnosed breast cancers.
- Sensitivity was estimated at 98% specificity after accounting for clonal hematopoiesis.
- Sensitivity was also higher in breast cancers detected via clinical presentation vs detected via screening.

CONCLUSIONS

- Breast cancers with detectable cfDNA signals at time of diagnosis included clinically aggressive subtypes (e.g., triple-negative breast cancer [TNBC], HR−/HER2+ breast cancer). Specificity was lower for TNBC vs HR−/HER2+ vs HR+/HER2+ vs HR+/HER2− breast cancer.
- Sensitivity at 98% specificity was higher in breast cancers detected via clinical presentation vs detected via screening.
- Sensitivity was also higher in breast cancers detected via clinical presentation vs detected via screening.
- Advances in sequencing technology have demonstrated the promise of using cfDNA-based assays to develop early cancer detection tests.

ACKNOWLEDGMENTS

Medical writing assistance provided by Megan P. Hall, PhD (GRAIL, Inc. Menlo Park, CA). Formatting assistance provided by NextCode, Inc. (Wuhan, China).