Plasma-Based Molecular Testing for Early Detection of Lung Cancer

November 8, 2018

Eric Fung, MD, PhD
GRAIL, Inc.
Menlo Park, California, USA
Disclosures

Eric Fung, MD, PhD is an employee of GRAIL and has stock options for GRAIL.
Cancer Mortality Increases with Later Detection

Five-Year Cancer-Specific Mortality (%) by AJCC Stage at Diagnosis*

<table>
<thead>
<tr>
<th>Tumor Type</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breast</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Colorectal</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Head and Neck</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Ovary</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Lymphoma</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Lung and Bronchus</td>
<td>75</td>
<td>75</td>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td>Stomach</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Esophagus</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Liver**</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Pancreas</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Illustration of Benefit vs Risk of a Multi-Cancer Test

FP (RISK) ≤ Low FP Cut-Off

Test Score

High

Low

Non-Cancer
Cancer Type 1 (eg, Lung)
Cancer Type 2
Cancer Types 3, 4...

Invasive cancers discovered by multicancer test (BENEFIT)

FN
Limitations of Current Screening Paradigms Represent an Opportunity for Improved Cancer Detection

Example: Early Detection of Lung Cancer is a High Unmet Medical Need

- Low-dose computed tomography (LDCT) improves lung cancer mortality in high-risk individuals\(^1,2\)
- Rate of clinical adoption remains low (1.9\%)\(^3,4\)
- Criticisms of LDCT include risk of false positives and logistical challenges\(^5\)

How cfDNA-Based Tests can Improve Cancer Detection

- Cancer genotyping using plasma cfDNA
 - Adopted for detection of specific actionable mutations
 - Currently only validated for advanced cancer
 - Uses smaller targeted gene panels
- Cancer detection using plasma cfDNA
 - Aims to identify a broader cancer “signature” rather than specific individual mutations
- Genome-wide approaches offer additional information that allow early detection
- Could address the unmet medical need

cfNA-Based Approaches to Cancer Detection

High-intensity sequencing to detect cfNAs
- Reliably detect cancer-defining cfNAs by looking broadly across the entire genome and at extraordinary depth to detect faint signals

Large-scale clinical studies
- Confirm clinical validity of tests through one of the largest clinical study programs ever conducted in genomic medicine

Powerful machine-learning approaches
- Apply the latest tools of data science to classify participants according to the presence, type, and severity of cancer
The Circulating Cell-Free Genome Atlas (CCGA) Study
CCGA is a Prospective, Longitudinal Cohort Study Designed for Cancer Detection

Blood samples (all participants)

15,000+ participants
70% with cancer
30% without
142 Sites

Tissue samples (cancer only)

Targeted sequencing cfDNA, WBCs
Whole-genome sequencing (WGS) cfDNA, WBCs
Targeted & whole-genome bisulfite sequencing (WGBS) cfDNA
Whole-genome sequencing of tumor tissue

Follow-up for 5 yrs

Cancer Participants: Data on cancer status & treatment, new cancer diagnosis, mortality
Non-Cancer Participants: Remain cancer free or develop new cancer diagnosis, data on cancer status & treatment, mortality

cfDNA, cell-free DNA; WBC, white blood cell; WGS, whole-genome sequencing; WGBS, whole-genome bisulfite sequencing.
CCGA: Discovery, Training, and Validation for a Multi-Cancer Test

~15,000 planned participants
70% cancer : 30% non-cancer

FPI: 08/2016

12,200 reserved for future studies

2,800 participants:
Prespecified case-control substudy
1,628 cancer; 1,172 non-cancer

Training Set: 1,785
Clinically Locked*

Test Set: 1,010
Clinically Locked*

*5 participants not clinically locked were excluded.
CCGA: Prespecified Case-Control Substudy of 2,800 Participants

Training Set: 1,785 Clinically Locked

- 1,733 Clinically Evaluable
 - 984 Cancer (127 Lung Cancer)
 - 878 stage I-IV
 - 580 Non-Cancer
 - 169 Non-Cancer Assay Controls

- 1,406 Analyzable with Assay Data
 - 845 Cancer (118 Lung Cancer)
 - 561 Non-Cancer

Test Set: 1,010 Clinically Locked

- 980 Clinically Evaluable
 - 576 Cancer (47 Lung Cancer)
 - 478 stage I-IV
 - 368 Non-Cancer
 - 36 Non-Cancer Assay Controls

- 834 Analyzable with Assay Data
 - 472 Cancer (46 Lung Cancer)
 - 362 Non-Cancer

*5 participants not clinically locked were excluded.
Comparable Cancer and Non-Cancer Groups

- Clinically evaluable cancer and non-cancer groups were comparable with respect to age, sex, race/ethnicity, and BMI.
- A higher proportion of participants with lung cancer were male and were ever-smokers.

<table>
<thead>
<tr>
<th></th>
<th>Training</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Non-Cancer</td>
<td>Cancer*</td>
</tr>
<tr>
<td>Total, n (%)</td>
<td>580</td>
<td>984</td>
</tr>
<tr>
<td>Age, Mean ± SD (years)</td>
<td>60 ± 13</td>
<td>61 ± 12</td>
</tr>
<tr>
<td>Sex (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>452 (78%)</td>
<td>697 (71%)</td>
</tr>
<tr>
<td>Race/Ethnicity (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>White, Non-Hispanic</td>
<td>489 (84%)</td>
<td>846 (86%)</td>
</tr>
<tr>
<td>African American</td>
<td>47 (8%)</td>
<td>67 (7%)</td>
</tr>
<tr>
<td>Hispanic, Asian, Other</td>
<td>44 (8%)</td>
<td>71 (7%)</td>
</tr>
<tr>
<td>Smoking Status (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Never-smoker</td>
<td>330 (57%)</td>
<td>484 (49%)</td>
</tr>
<tr>
<td>BMI Normal/Underweight</td>
<td>156 (27%)</td>
<td>266 (27%)</td>
</tr>
<tr>
<td>Overweight**</td>
<td>184 (32%)</td>
<td>319 (32%)</td>
</tr>
<tr>
<td>Obese***</td>
<td>240 (41%)</td>
<td>398 (40%)</td>
</tr>
</tbody>
</table>

*Cancer types by training/test: Breast (410/201), lung (127/47), prostate (74/58), colorectal (51/46), renal (29/18), uterine (28/9), pancreas (27/23), esophageal (25/22), lymphoma (25/22), head & neck (21/12), ovarian (21/7), hepatobiliary (15/16), melanoma (15/12), cervical (14/11), multiple myeloma (14/21), leukemia (13/16), thyroid (13/10), bladder (12/3), gastric (12/15), anorectal (7/3), and unknown primary/other (22/18). **BMI≥25. ***BMI≥30.
Stage Distribution and Method of Diagnosis were Consistent in Training and Test Sets

<table>
<thead>
<tr>
<th></th>
<th>Training Set</th>
<th>Test Set</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cancer (n=984)</td>
<td>Lung Cancer (n=127)</td>
</tr>
<tr>
<td>Overall Clinical Stage (n, %)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0*</td>
<td>56 (6%)</td>
<td>1 (<1%)</td>
</tr>
<tr>
<td>I</td>
<td>300 (30%)</td>
<td>23 (18%)</td>
</tr>
<tr>
<td>II</td>
<td>249 (25%)</td>
<td>14 (11%)</td>
</tr>
<tr>
<td>III</td>
<td>165 (17%)</td>
<td>39 (31%)</td>
</tr>
<tr>
<td>IV</td>
<td>164 (17%)</td>
<td>47 (37%)</td>
</tr>
<tr>
<td>Non-Informative**</td>
<td>50 (5%)</td>
<td>3 (2%)</td>
</tr>
<tr>
<td>Method of Dx (n, %)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diagnosed by Screening§</td>
<td>354 (36%)</td>
<td>23 (18%)</td>
</tr>
<tr>
<td>Diagnosed by Clinical Presentation¶</td>
<td>630 (64%)</td>
<td>104 (82%)</td>
</tr>
</tbody>
</table>

*DCIS/CIS. **Staging information not available. §Percent screen-detected in training/test sets for breast cancer: 58%/58%, colorectal cancer: 29%/37%, lung cancer: 18%/15%, prostate cancer: 91%/90%, and other cancers 4%/4%. ¶Clinical presentation includes all cancers not detected by screening (ie, detected symptomatically or as incidental findings).
Prototype Sequencing Assays Used to Comprehensively Characterize Cancer-Specific cfDNA Signals

- **All major somatic and epigenetic cfDNA features characterized**

Input
- **WGBS**
 - cfDNA: Bisulfite sequencing, 30X depth
 - WBC gDNA: 30X depth
- **WGS**
 - cfDNA: 30X depth
 - WBC gDNA: 507 gene panel, 60,000X depth, 3,000X unique coverage
- **Targeted**
 - WBC gDNA: 507 gene panel, 60,000X depth, 3,000X unique coverage

Interference
- **WGBS**
 - Aging, Biological variation
- **WGS**
 - SCNA signals derived from WBCs
- **Targeted**
 - Variants derived from WBCs

Final Features
- **WGBS**
 - Fragment-level CpG methylation status
- **WGS**
 - cfDNA Somatic copy number
- **Targeted**
 - Non-synonymous SNVs/indels

Classifiers
- **WGBS Classifier**
- **WGS Classifier**
- **Targeted Classifier**

cfDNA, cell-free deoxyribonucleic acid; WBC, white blood cell; WGS, whole-genome sequencing; WGBS, whole-genome bisulfite sequencing.
Potential Source of False Positives: Clonal Hematopoiesis

- Previous study sequencing at ~100X: 96% of variants at >1% variant allele frequencies (VAF)\(^1\)

- Ultra-deep sequencing (this study [Training set]): <10% of WBC-matched variants at >1% VAF

- Variants at lower VAFs will require high-depth sequencing of WBCs to effectively exclude this confounding signal in cfDNA-based assays

- Early detection requires a low limit of detection, wherein low VAF CHIP is a confounding signal

CHIP, clonal hematopoiesis of indeterminate potential; cfDNA, cell-free DNA; WBC, white blood cell; gDNA, genomic DNA.
Majority of cfDNA Variants Are WBC-Matched Clonal Hematopoiesis

- In Training set, average non-tumor WBC-matched cfDNA somatic variants (SNVs/indels) were:
 - 98% of all variants in non-cancer group
 - 71% in total cancer group
 - 54% in lung cancer group
- Number of WBC variants is positively associated with age in cancer and non-cancer groups\(^1\)

\(^1\)Swanton C et al. *J Clin Oncol.* 2018;36(suppl; abstr 12003).

cfDNA, cell-free DNA; WBC, white blood cell; SNV, single-nucleotide variant; indel, insertion or deletion.
Simulating Existing Assays¹: Not Optimized for Screening

- CCGA [Training set] used for simulation analysis:
 - 561 non-cancer; 118 participants with lung cancer
- Testing a single location (emulating ddPCR)
 - KRAS:p.G12X
 - Small number of cancer participants detected
 - Few non-cancer participants
- NGS panel reporting 813 clinically actionable variants from 30 genes²
 - More cancer participants detected
 - Many non-cancer participants detected due to WBC/CHIP variants
- CCGA targeted NGS assay with coverage of 507 genes and combined cfDNA and WBC sequencing
 - Joint cfDNA/WBC ML calling to remove WBC/CHIP variants
 - Increased detection of cancer participants
 - Reduced false-positives (specificity set at 98%)

¹Oxnard GR et al. J Clin Oncol. 2018;36(suppl; abstr LBA8501).
ddPCR, digital-droplet PCR; cfDNA, cell-free DNA; WBC, white blood cell; CHIP, clonal hematopoiesis of indeterminate potential; NGS, next generation sequencing; ML, machine learning.
Sensitivity Consistent Across Assays and at High Specificity—Training Set

- In age-matched controls, there is expected to be a latent rate of 1% of undiagnosed cancer
 - Some of those cancers will be detectable by the prototype assays and classifiers
 - The longitudinal design of the study allows us to correctly assign cancer status to individuals post-enrollment once diagnoses are reported from normal clinical practice
- We conservatively look at 98% specificity to account for these latent cases
 - Specificity will continue to evolve as follow-up is completed

WGS, whole-genome sequencing; WGBS, whole-genome bisulfite sequencing.
High Specificity (>99%) is Feasible

5-year follow-up will enable identification of participants who are subsequently diagnosed

Training:
- 580 Control Participants
- 5 (<1%) Notable cancer-like signal* present
- 575 No notable cancer-like signal* (test negative or absent)
 - 3 Confirmed cancer
 - Lung IV
 - Endometrial II
 - Ovarian III
- 2 No cancer identified
 - Follow-up ongoing

Test:
- 368 Control Participants
- 3 (<1%) Notable cancer-like signal* present
- 365 No notable cancer-like signal* (test negative or absent)
 - 3 No cancer identified
 - Follow-up ongoing

*Notable cancer-like signal defined as ≥2 assays with significant abnormalities compared to the typical non-cancer population, or known cancer drivers present with ≥1 significant assay abnormality.
Consistent Results Across Assays and Between Training and Test Sets

- Cancers that had >40% detection in training included lung, HR-negative breast, colorectal, esophageal, head & neck, hepatobiliary, lymphoma, ovarian, and pancreatic cancers, and multiple myeloma.

Signal was also consistent in low-signal cancers (<10% in training on any of the three assays: prostate, thyroid, gastric, melanoma).

WGS, whole-genome sequencing; WGBS, whole-genome bisulfite sequencing.
Early- and Late-Stage Cancers Detected in the Test Set

Cancer Type	N	Stage I-III	Stage IV
Lung | 27 | 19 | 0%
Esophageal | 7 | 0% | 0%
Head & Neck | 7 | 5 | 0%
Pancreas | 8 | 14 | 0%
Colorectal | 29 | 10 | 0%
Hepatobiliary | 8 | 6 | 0%
Breast (HR-) | 19 | 3 | 0%
Ovarian | 5 | 2 | 0%
Lymphoma | 13 | 5 | 0%
Multiple Myeloma | 8 | 0% | 0%

- Detection was observed in across all stages
 - Sensitivity was higher in Stage IV cancers
 - 45% cancers detected were Stages I-II
- Strong detection of cancers with high (>50%) cancer-specific mortality rates at five years¹

WGBS, whole-genome bisulfite sequencing.
Lung Cancer Detection by Smoking Status and Histologic Subtype in the Test Set

- 93% (43/46) of participants with lung cancer were ever-smokers
- Signal was detected in ever-smokers, as well as in never-smokers
 - Of 3 never-smokers, 2 were detected by the methylation assay, 1 by the WGS assay, and 3 by the targeted assay

Signal was also detected consistently across histologic subtypes (Stage I-IV WGBS assay reported):
 - 100% (5/5) of SCLC cases were detected
 - 65% (11/17) of SCC cases were detected
 - 60% (12/20) of adenocarcinoma cases were detected

WGS, whole-genome sequencing.
Summary

- Preliminary cfDNA-based blood test results detected multiple cancers, including lung, and across all stages—even early stages when treatment may be more effective
 - Test set confirmed the signal observed in the training set
 - >99% specificity is feasible
 - Targeted methods require accounting for clonal hematopoiesis
 - High detection of cancers with high mortality and that lack screening paradigms or where screening is not well-adopted
- This approach is thus promising as a multi-cancer detection test, including for early-stage cancers
- Further assay and clinical development in large-scale clinical studies, including CCGA, is ongoing

WGS, whole-genome sequencing; WGBS, whole-genome bisulfite sequencing.
Acknowledgements

● Study participants who graciously donated their time, energy, and specimens

● CCGA investigators and collaborators for advice, enrolling participants, and collecting data and specimens
 ○ Principal Investigators from sites enrolling >35 participants in this preplanned substudy: Minetta C. Liu (Mayo Clinic, MN); David Thiel (Mayo Clinic, FL); Rosanna Lapham, MD (Spartanburg Regional Health Services, SC); Donald Richards, MD, PhD (TOPA Tyler, TX, US Oncology Network); Nicholas Lopez, MD (Baptist Health Paducah, KY); Daron G. Davis, MD (Baptist Health Lexington, KY); Mohan Tummala, MD (Mercy Springfield, MO); Peter Yu, MD (Hartford Hospital, CT); Wangjian Zhong, MD (Baptist Health, Louisville, KY); Alexander Parker, MD (Mayo Clinic Jacksonville, FL); Kristi McIntyre, MD (TOPA Dallas Presbyterian, TX, US Oncology Network); Fergus Couch (Mayo Clinic Rochester, MN); Robert Seigel (Bon Secours Greenville, SC); Allen L. Cohn, MD (Rocky Mountain Cancer Center Hale Parkway Denver, CO, US Oncology Network); Alan H. Bryce (Mayo Clinic Phoenix, AZ)

● Advisors and Scientific Advisory Board members for their helpful feedback and advice

● The many GRAIL teams who have worked and continue to work on this study